Assignment 4

Hand in no. 6, 7, 8b and 9 by October 10, 2024.

- 1. Let $C^k[a, b]$ be the vector space of all k-th continuously differentiable functions on [a, b]. Show that $||f||_k \equiv \sum_{j=0}^k ||f^{(j)}||_{\infty}$ defines a norm on $C^k[a, b]$. Furthermore, $f_n \to f$ in $(C[a, b], || \cdot ||_k)$ means $f_n \rightrightarrows f, \cdots, f_n^{(k)} \rightrightarrows f^{(k)}$.
- 2. Let $C^{\infty}[a, b]$ be the vector space of all infinitely many times differentiable functions on [a, b]. Show that

$$d_{\infty}(f,g) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{\|f - g\|_k}{1 + \|f - g\|_k}$$

defines a metric on $C^{\infty}[a, b]$ such that $f_n \to f$ means $||f_n - f||_k \to 0$ for all k.

- 3. In class we showed that the set $P = \{f : f(x) > 0, \forall x \in [a, b]\}$ is an open set in C[a, b]. Show that it is no longer true if the norm is replaced by the L^1 -norm. In other words, for each $f \in P$ and each $\varepsilon > 0$, there is some continuous g which is negative somewhere such that $||g - f||_1 < \varepsilon$.
- 4. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows in particular that countable intersection of open sets may not be open.
- 5. Optional. Show that every open set in \mathbb{R} can be written as a countable union of disjoint open intervals. Suggestion: Introduce an equivalence relation $x \sim y$ if x and y belongs to the same open interval in the open set and observe that there are at most countable many such intervals.
- - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \dots\}$.
- 7. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y): 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$
- 8. Describe the closure and interior of the following sets in C[0, 1]:

(a)
$$\{f: f(x) > -1, \forall x \in [0,1]\}.$$

- (b) $\{f: f(0) = f(1)\}.$
- 9. Find subsets in \mathbb{R} such that $\overline{A \cap B}$ is properly contained in $\overline{A} \cap \overline{B}$.
- 10. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.